חAmIBIA UחIVERSITY
OF SCIEПCE AПD TECHחOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

DEPARTMENT OF BIOLOGY, CHEMISTRY AND PHYSICS

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 5
COURSE CODE: GNC501S	COURSE NAME: GENERAL CHEMISTRY 1A
SESSION: JULY 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SECOND/SUPPLEMENTARY OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	MRS. LEONORITHA R. NAOMAS
MODERATOR:	DR. MARIUS MUTORWA

INSTRUCTIONS
1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly
4. All written work must be done in blue or black ink and
sketches can be done in pencil
5. No books, notes and other additional aids are allowed

PERMISSABLE MATERIALS
Non-programmable calculators

ATTACHMENTS

1. List of useful constants
2. Periodic Table

THIS QUESTION PAPER CONSISTS OF 9 PAGES
(Including this front page, list of useful constants and Periodic Table)

- There are 20 multiple choice questions in this section. Each question carries 3 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.

1. Which of the following pairs of species is not a conjugate acid-base pair?
A. HCl and H^{+}
B. $\mathrm{HSO}_{4}{ }^{-}$and $\mathrm{SO}_{4}{ }^{2-}$
C. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HSO_{4}^{-}
D. $\mathrm{H}_{2} \mathrm{O}$ and OH^{-}
2. Which of the following reactions illustrate $\mathrm{Al}(\mathrm{OH})_{3}$ acting as a Lewis acid?
A. $\mathrm{Al}(\mathrm{OH})_{3} \rightarrow \mathrm{Al}^{3+}+3 \mathrm{OH}^{-}$
B. $\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{OH}^{-} \rightarrow \mathrm{Al}(\mathrm{OH})_{2} \mathrm{O}^{-}+\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{OH}^{-} \rightarrow \mathrm{Al}(\mathrm{OH})_{4}^{-}$
D. $\mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}^{+} \rightarrow \mathrm{Al}^{3+}+3 \mathrm{H}_{2} \mathrm{O}$
3. Calculate the hydroxide ion concentration of a solution if its pH is 6.389 .
A. $1.00 \times 10^{\wedge}-14 \mathrm{~mol} / \mathrm{L}$
B. $4.08 \times 10^{\wedge}-7 \mathrm{~mol} / \mathrm{L}$
C. $9.92 \times 10^{\wedge}-7 \mathrm{~mol} / \mathrm{L}$
D. $2.45 \times 10^{\wedge}-8 \mathrm{~mol} / \mathrm{L}$
4. Consider each of the following pairs of acids. Which statement is correct?
A. ClO_{2} is a stronger acid than HClO_{4}.
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a stronger acid than $\mathrm{H}_{2} \mathrm{SeO}_{4}$.
C. $\mathrm{H}_{2} \mathrm{O}$ is a stronger acid than HF .
D. $\mathrm{H}_{2} \mathrm{~S}$ is a stronger acid than $\mathrm{H}_{2} \mathrm{Se}$.
5. According to Bohr Theory, which of the following transitions in the hydrogen atom will give rise to the least energetic photon? Use the equation: $\mathrm{En}=\left(-2.18 \times 10^{\wedge}-18 \mathrm{~J}\right)(1 / \mathrm{n} 2)$
A. $n=5$ to $n=3$
B. $n=6$ to $n=1$
C. $n=4$ to $n=3$
D. $n=6$ to $n=5$
6. Which of the following elements has the largest ionization energy?
A. Na
B. Ne
C. F
D. K
7. In Bohr's model of the hydrogen atom, the radius of an orbit
A. is proportional to n 2 .
B. is smallest for the highest energy state.
C. increases when a photon of light is emitted from an excited atom.
D. can have any value that is larger than the ground-state radius.
8. Which of the following statements about periodic properties is incorrect?
A. Both electron affinity and ionization energy decrease down a group.
B. Atomic size increases to the right across a period.
C. Ionization energy increases to the right across a period.
D. Atomic size increases down a group.
9. Deviations from the ideal gas law are less at:
A. high temperatures and high pressures
B. high temperatures and low pressures
C. low temperatures and high pressures
D. low temperatures and low pressures
10. Determine the number of moles of aluminum in $2.154 \times 10^{\wedge}-1 \mathrm{~kg}$ of Al .
A. 5816 mol
B. 7.984 mol
C. $6.02 \times 10^{\wedge} 23 \mathrm{~mol}$
D. 4.801 mol
11. This equation is unbalanced: $\mathrm{PCl}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{3}+\mathrm{HCl}$ When it is correctly balanced, the coefficients are, respectively:
A. $1,3,1,1$
B. $1,1,1,3$
C. $1,3,1,3$
D. $2,3,2,3$
12. What is the correct name for $\mathrm{Pb}\left(\mathrm{ClO}_{2}\right)_{2}$:
A. lead(II) chlorite
B. lead dichlorite
C. lead (II) chlorate
D. lead chlorate
13. What is the correct formula for mercury (I) sulfide?
a) HgS
b) $\mathrm{Hg}_{2} \mathrm{~S}$
c) $\mathrm{Hg}_{2} \mathrm{SO}_{4}$
d) $\mathrm{Hg}_{2} \mathrm{SO}_{3}$
14. What would happen to the average kinetic energy of the molecules of a gas sample if the temperature of the sample increased from $20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$?
A. It would double.
B. It would become half its value.
C. It would decrease.
D. It would increase.
15. Which conditions of P and T are most ideal for a gas?
A. low P, high T
B. high P, low T
C. high P, high T
D. depends on the gas
16. How many actual double bonds does the benzene ring possess?
A. None, carbon-carbon bonds in benzene are delocalized around the ring
B. 1 double bond
C. 2 double bonds
D. 3 double bonds
17. The functional group given below is characteristic of organic \qquad -.

A. ketones
B. acids
C. aldehydes
D. esters
18. Give the IUPAC name of this compound: $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{3}$.
A. dimethyl ether
B. methoxyethane
C. methylethyloxide
D. propyl ether
19. Which is NOT a physical property of alcohols or phenols?
A. Phenols are generally only slightly soluble in water.
B. The solubilities of normal primary alcohols in water decrease with increasing molecular weight.
C. The hydroxyl group of an alcohol is nonpolar.
D. Due to hydrogen bonding, boiling points of alcohols are much higher than those of corresponding alkanes.
20. The general formula for noncyclic alkynes is:
A. $\mathrm{C}_{n} \mathrm{H}_{2 n}$
B. $\mathrm{C}_{n} \mathrm{H}_{n}$
C. $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$
D. $\mathrm{C}_{n} \mathrm{H}_{2 n-2}$

There are FOUR questions in this section. Answer all Questions.
Show clearly, where necessary, how you arrive at the answer as the working will carry marks.

Question 1

Ethylene dibromide was used as a grain pesticide until it was banned. Calculate the:
a. empirical formula and
b. molecular formula for ethylene dibromide given its approximate molar mass of $190 \mathrm{~g} / \mathrm{mol}$ and its percent composition: $12.7 \% \mathrm{C}, 2.1 \% \mathrm{H}$, and $85.1 \% \mathrm{Br}$.

Question 2

Given the following equation:

$$
\mathrm{Al}_{2}\left(\mathrm{SO}_{3}\right)_{3}+6 \mathrm{NaOH}----->3 \mathrm{Na}_{2} \mathrm{SO}_{3}+2 \mathrm{Al}(\mathrm{OH})_{3}
$$

2.1 If 10.0 g of $\mathrm{Al}_{2}\left(\mathrm{SO}_{3}\right)_{3}$ is reacted with 10.0 g of NaOH , determine the limiting reagent
2.2 Determine the number of moles of $\mathrm{Al}(\mathrm{OH})_{3}$ produced.
2.2 Determine the number of grams of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ produced.
2.4 Determine the number of grams of excess reagent left over in the reaction.

Question 3

3.1 The osmotic pressure of a 0.010 M aqueous solution of CaCl_{2} is found to be 0.674 atm at $25^{\circ} \mathrm{C}$.
a. Calculate the van't Hoff factor, i, for the solution.
b. How would you expect the value of i to change as the solution becomes more concentrated? Explain.
3.2 At $63.5^{\circ} \mathrm{C}$ the vapor pressure of $\mathrm{H}_{2} \mathrm{O}$ is 175 torr, and that of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ is 400 torr. A solution is made by mixing equal masses of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$.
a. What is the mole fraction of ethanol in the solution?
b. Assuming ideal-solution behavior, what is the vapor pressure of the solution at $63.5^{\circ} \mathrm{C}$? (3)
c. What is the mole fraction of ethanol in the vapor above the solution?
5.1 Draw all possible open-chain structures for the following molecular formulas and name them:
a) $\mathrm{C}_{5} \mathrm{H}_{12}$
b) $\mathrm{C}_{5} \mathrm{H}_{10}$
c) $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$
.

USEFUL CONSTANTS:

Gas constant, $\mathrm{R}=8.3145 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}=0.083145 \mathrm{dm}^{3} \cdot \mathrm{bar} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-}$ 1
$1 \mathrm{~Pa} \cdot \mathrm{~m}^{3}=1 \mathrm{kPa} \cdot \mathrm{L}=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~J}$
$1 \mathrm{~atm}=101325 \mathrm{~Pa}=760 \mathrm{mmHg}=760$ torr

Avogadro's Number, $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

Planck's constant, $\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}$

Speed of light, $\mathrm{c}=2.998 \times 10^{8} \mathrm{~ms}^{-1}$

PERIODIC TABLE OF THE ELEMENTS

1	2											13	14	15	16	17	18 $\mathbf{H e}$ 4.00260
1																	
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.01218											10.81	12.011	14.0067	15.9994	18.9984	20.179
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	P	S	Cl	Ar
22.9898	24.305	3	4	5	6	7	8	9	10	11	12	26.9815	28.0855	30.9738	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	$\mathbf{Z n}$	Ga	Ge	As	Se	Br	$\mathbf{K r}$
39.0983	40.08	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332	58.69	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	$\mathbf{Z r}$	Nb	Mo	Tc	$\mathbf{R u}$	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.4678	87.62	88.9059	91.22	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.41	114.82	118.69	121.75	127.6	126.9	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.905	137.33	174.967	178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.2	208.908	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112		114		116		118
Fr	Ra	Lr	$\mathbf{R f}$	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq		Uuh		Uuo
(223)	226.025	(260)	(261)	(262)	(263)	(264)	(265)	(268)	(269)	(272)	(269)						

Lanthanides:

57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	$\mathbf{Y b}$
138.906	140.12	140.908	144.24	(145)	150.36	151.96	157.25	158.925	162.50	161.930	167.26	166.934	173.04

Actinides:

89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	$\mathbf{P u}$	Am	Cm	Bk	Cf	Es	Fm	Md	No
227.028	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)

